JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. B5, PAGES 10,609-10,619, MAY 10, 1999

How strong is an asperity?
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Abstract. A recent study of repeating earthquakes on the San Andreas Fault in central Califor-
nia by Nadeau and Johnson [1998] found that the smallest events occurred on patches having a
linear dimension of the order of 0.5 m, displacements of about 2 cm, and stress drops of the order
of 2000 MPa, roughly 10 times larger than rock strengths measured in the laboratory. The stress
drop for larger events was observed to decrease as a power law of the seismic moment reaching the
commonly observed value of 10 MPa at about magnitude 6. These large strengths are shown here
to be consistent with laboratory data if the preexisting microcracks are all healed. A hierarchical
fractal asperity model is presented, which is based on recent laboratory observations of contact dis-

tributions in sliding friction experiments. This “Cantor dust” model is shown to be consistent
with the observed power law decrease in stress drop and increase in displacement with increasing
event size. The spatial distribution of hypocenters in the Parkfield area is shown to be consistent
with this simple fractal model and with a hierarchical clustering of asperities having a fractal di-

mension of D=1 and discrete rescaling factor of about 20.

1. Introduction

There is convincing field evidence that the San Andreas
Fault (SAF) is weak in the sense that earthquakes occur at val-
ues of resolved shear stress well below those predicted by
laboratory rock mechanics. Simple friction operating at
lithostatic normal stress and at the observed geological dis-
placement rates should produce a thermal anomaly that is not
observed. Known popularly as the "heat flow paradox," the
lack of a heat flow anomaly over the San Andreas Fault places
an upper limit on the resolved shear stress of about 20 MPa
[Henyey and Wasserburg, 1971; Lachenbruch and McGarr,
1990; Lachenbruch and Sass, 1992]. Low values of the re-
solved shear stress are also implied by in situ borehole meas-
urements of stress in the vicinity of the San Andreas which
find that the maximum principal stress axis is almost perpen-
dicular to the fault plane [Zoback et al., 1987].

Paradox is probably too strong a term to use here since
there are at least two conceptually simple resolutions of the
apparent conflict between laboratory and field strength deter-
minations. One is the possibility that fluid pressures are very
high in the fault zone. Fluid pressures approaching lithostatic
pressure would reduce the effective normal stress across the
fault plane to a value near zero thus allowing frictional slip at
arbitrarily low values of resolved shear stress [Rice, 1992;
Sleep and Blandpied, 1992; Byerlee, 1993]. A second possi-
bility is that displacements normal to the fault plane during
the earthquake reduce the normal stress during slip and thus
lower the frictional losses. Brune et al. [1993], Melosh [1996],
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Andrews and Ben-Zion [1997], and P. Mora and D. Place (The
dynamics of heat and earthquake faults, submitted to Journal of
Geophysical Research, 1998) develop several = different
mechanisms through which this can be accomplished. How-
ever, none of these hydraulic or mechanical solutions has been
universally accepted [see, e.g., Scholz, 1996].

Although the average stress drop associated with many
large earthquakes is low, there may be large spatial fluctua-
tions. Figure 1 taken from Bouchon [1997] is typical of many
recent high-resolution images of stress drop during a large
earthquake [Beroza, 1991; Beroza and Spudich, 1988;
Hartzell and Heaton, 1983, 1986; Antolik et al, 1996;
Bouchon, 1997; Day et al., 1998]. In a few small areas the
stress drop exceeds 100 Mpa, while in other areas the slip
leads to an increase in stress (a negative stress drop). Appar-
ently, the fault plane is extremely heterogeneous and only ac-
cumulates stress over a small fraction of its area at a limited
number of asperities. In this case, stress concentrations at the
asperities can reach laboratory failure levels while the average
stress over the entire fault plane depends on the fractional area
of the asperities and can thus remain arbitrarily low

A recent study of repeating earthquakes on the San Andreas
Fault near Parkfield California supports this picture and sug-
gests that the stress concentrations at asperities may be even
more extreme than those found in the seismic studies cited
above. Nadeau and Johnson [1998] determined the seismic
moments for 221 microearthquakes in the magnitude range
-0.7 to 1.4. These earthquakes comprised 53 repeating se-
quences of between 2 and 13 events having essentially the
same hypocenter and virtually identical seismograms. They
also estimated moments for eight repeating sequences of
events having magnitudes between 3.5 and 4.9 from the Stone
Canyon section of the SAF originally discussed by Ellsworth
and Dietz [1990] and for the repeating sequence of six magni-
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Figure 1. Tomographic image of the static stress drop inferred for the My =6.9 Morgan Hill earthquake from
Bouchon [1997] calculated using the fault slip model of Beroza and Spudich [1988].

tude 6 events that have occurred at Parkfield since 1857 [Bakun
and McEvilly, 1984]. The seismic moment M, can be inter-
preted in terms of the shear modulus G, the area of the rupture
A, and the average displacement d as

M, = GAd )
By assuming that the rate of displacement of each repeating
sequence is equal to the rate of displacement for the fault seg-
ment, Nadeau and Johnson [1998] were able to find the area of
the asperity associated with each sequence using the relation

(M) = Ga(d) @)

where <1\./10> is the average rate of moment release on the re-
peating patch of area A and <d> is the average slip rate on the
patch which they equated with the geologically measured slip
rate (2.3 cm/yr for Parkfield and Stone Canyon over the short
term and 3.3 cm/yr for the larger Parkfield events over the
long term). Since <M0> and <d> are known and G is easily es-
timated, A is determined for each repeating asperity. Knowing
A for each sequence, (1) was used to find d for each sequence.
Knowing d and A allowed them to estimate the stress drop, Ao,
for each sequence using the relation for a circular crack of ra-
dius a [see, e.g., Kanamori and Anderson, 1975, and refer-
ences therein]

3

Nadeau and Johnson's [1998] results are consistent with
the picture of a small number of very strong asperities. The
smallest events occurred on patches having a linear dimension

of the order of 0.5 m and a displacement of 2 cm. These large -

strains imply a large stress drop on the order of 2000 MPa.
Larger events correspond to larger areas, but it is interesting
that the displacement increases much more slowly than does
the linear dimension of the fault area. Hence the faulting in
these sequences is not self-similar, and stress drop decreases
with increasing moment as indicated in Figure 2. However, the
stress drops found for the largest repeating events at Parkfield
are still between 10 and 100 times larger than those estimated
for similar sized repeating events on the Calaveras Fault using

the seismically derived slip duration [Marone et al., 1995;
Vidale et al., 1994].

The observed decrease in stress drop with increasing mo-
ment suggests the possibility that larger asperities are com-
prised of a cluster of smaller ones such that the number of load-
bearing asperities decreases with increased slip area. This pic-
ture of the stresses across a fault being supported by a small
number of very strong asperities is further supported by
Nadeau and Johnson's [1998] observation that all of the more
than 6000. events recorded to date occupy less than 1% of the
active fault surface. It is important to reemphasize that the
high stress drops for the small events is a direct consequence
of the assumption that the displacement rate for the repeating
events is the same as that measured over the appropriate time
interval at the surface. If shallow creep or some other mecha-
nism is causing the surface trace to move faster than the as-
perities, then the stress drops calculated for the repeating
events will be correspondingly reduced.

In this paper we assume that the analysis by Nadeau and
Johnson [1998] is correct and explore two questions raised by
their observations. First, are the large stress drops measured
for the smallest events physically reasonable? Can rock
strength reach 2000 MPa under crustal conditions as implied
by their analysis? A strength of 2000 MPa is roughly 10 times
that measure under crustal conditions in the laboratory. We
show that such a high strength is possible if all the mechani-
cal flaws in the rock are healed and strength is limited by true
dislocation accommodated plasticity. The second question that
we address is what distribution of asperities is consistent with
the observed decrease in stress drop and increase in displace-
ment with increased moment given in Figure 2? We show that
a discrete hierarchical fractal distribution having a mass di-
mension of 1.0 is consistent with the data in Figure 2. We also
show that a spatial fractal analysis of the Parkfield hypocenter
data is consistent with this distribution and further implies a
hierarchical fractal clustering having a discrete rescale factor
near 20.

2. How Strong is Rock?

In the laboratory, rock fails by the nucleation and growth of
fractures from preexisting flaws (cracks and pores). Under ten-
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Figure 2. (a) Stress drop Ac and (b) displacement d as of function of seismic moment M, for repeating earth-
quakes on the San Andreas fault in central California [redrafted with permission from Nadeau and Johnson,
1998, ©1998 Seismological Society of Americal.
sile loading, failure occurs when the stress intensity Kj on the tensile "wing cracks" nucleate from preexisting inclined

largest most dangerously oriented flaw reaches a critical value

K] (a material property equal to about 1 MPa m!/2 for most
ceramics).

K1=O'\/a=K,C (4)

where a is the half-length of the critical flaw. This is an unsta-
ble failure at constant stress since crack extension increases
K7 and the critical flaw grows until it spans the sample. Under
compressive loading failure is still the result of the nucleation
and growth of cracks from preexisting flaws. However, in this
case, crack growth is stable. Once nucleated, an individual
crack requires an increase of applied stress to continue propa-
gation. Macroscopic failure in compression is a progressive
process which requires the interaction of a myriad of growing
microcracks.

Ashby and Sammis [1990] formulated a damage mechanics
for compressive loading based on models for the nucleation,
growth, and interaction of fractures. According to their model,

cracks of half-length @ when the following conditions are met

o6 g

(5)
(1+H2)1/2 —u03 + (1+“2)1/2 . Jma

o=

In this expression, W is the coefficient of friction on the in-
clined starter flaws and o, and o, are the maximum and mini-
mum principal stresses, respectively. Failure in their model is
identified with the maximum value of o, for a given o,. Up to
this maximum value, crack damage is stable in that higher
stress is required to produce more crack damage. Beyond the
maximum the strong cooperative interaction between individ-
ual cracks causes damage to increase at decreasing values of G,.
This is an unstable situation leading to strain localization and
macroscopic failure.

It is important to note that both nucleation and failure
stress scale as the square root of the initial flaw size. Universal



nucleation and failure surfaces can be expressed in terms of the
dimensionless stresses .
O; N Ta (6)

and crack damage is defined as

D=4a(l+aa)’N, @
where / is the length of the wing crack, Ny, is the number of
starter cracks per unit volume, and o is a geometrical factor. In
this model, the only important physical parameters that de-
termine compressive failure strength are the size of the starter
flawe and thair doancity

flaws and their density.

Ashby and Sammis [1990] were able to fit the failure surfaces
of a number of rocks for reasonable values of u, @ and N,,. For
Westerly granite, a fit to the damage initiation surface deter-
mined by Brace et al. [1966] and Holcomb and Costin [1986]
and to failure surfaces measured by Brace et al. [1966] and Mogi
[1966] yielded u=0.64, 24=1.0 mm, and an initial damage
Dy=(47/3)(0.a)’N,=0.01. This failure surface is shown in Figure
3 where high pressure data from Schock and Heard [1974] and
Shimada [1981] have been added. Note that at confining pres-
sures above about 200 MPa the measured failure surface devi-
ates from the more linear theoretical surface. Ashby and Sam-
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mis [1990] interpreted this nonlinearity as a transition to the
yield surface as the nucleation and growth of microfractures is
suppressed by the high confining pressure. Similar transitions

.were observed in dunite, eclogite, gabbro, limestone, marble,

and rock salt.
The yield surface for true plasticity is defined by
2 1 2 2 2]

o, =il(61_02) +(02-03)" +(03-0y) J ®)
For triaxial testing conditions, 0,=0, and the yield surface may
be reduced to 6,=0,-0, which is plotted in Figure 3 where the
yield stress is seen to be 6,=2600 MPa. Yield strength can be
derived from hardness, H, using o, = H/3. For o quartz, hard-
ness measurements give Gy in the range 2640-3300 MPa at 0
°C and in the range 1980-2640 MPa at 300 °C [Westbrook,

1958]. It is characteristic of complex oxides and silicates that

hardness is not temperature sensitive at temperatures up to
about 0.6 of the melting temperature [Westbrook, 1966]. We
do not therefore expect the yield strength to decrease signifi-
cantly at crustal temperatures.

From Figure 3, it is apparent that laboratory confining
pressures between 1000 and 2000 MPa are required to suppress
microfracturing to the point where the strength is limited by
plastic yielding. However, lithostatic pressure at the base of
the seismogenic zone (15 km) is only about 500 MPa. Hence,
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Figure 3. Failure data for Westerly granite. The failure surface was calculated using the damage mechanics
model of Ashby and Sammis [1990]. The yield surface was calculated using experimental hardness data as dis-
cussed in the text. At large confining stress o, brittle fracture is suppressed and failure occurs by plastic yield-
ing. In the absence of microcracks, failure would occur on the yield surface at lower values of o, found in the
seismogenic zone thus offering a possible explanation for the high strength observed for smallest asperities.
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if strength is to be limited by yielding of fault plane asperi-
ties, brittle fracture must be suppressed by some other mecha-
nism. One possibility is the healing of preexisting flaws.
Without preexisting microfractures to serve as nucleation
sites, the pervasive microfracturing which leads to brittle fail-
ure cannot occur and strength will be limited by the yield sur-
face.

So, how strong is an asperity? The maximum shear
strength, (0,-0,)/2=0,/2 is about 1300 MPa, significantly
stronger than the brittle strength under similar conditions and
a bit stronger than 1033 MPa estimated for Westerly granite
by Savage et al. [1996] using different laboratory data and a
slightly different analysis.

The hypothesis that asperities fail by true plasticity im-
plies that the stress drop should be only weakly dependent on
depth because dislocation motion in the low-temperature re-
gime (for homologous temperature, /T, less than 0.8) is
relatively insensitive to pressure and to temperature. Figure 4
shows the scaled stress drop as a function of depth for the re-
peating earthquakes at Parkfield. The stress drop has been
scaled to account for the observed decrease with increased mo-
ment in Figure 2a by plotting [log(Ac)-8.191/[-0.25l0g(M,)]
as a function of depth. No depth dependence is evident.

Finally, if the strength of asperities is limited by plastic-
ity, the question remains as to the nature of the instability that
nucleates an event. One possibility is that the dislocation ac-
tivity associated with yielding may nucleate fractures leading
to brittle failure. Ashby and Sammis [1990] discuss evidence
for this possibility in their discussion of the damage mechan-
ics of limestone. Regardless of the mechanism responsible for
the nucleation, violent failure was observed to occur up to the
highest pressures shown in Figure 3. Schock and Heard [1974]
report that their samples failed in a brittle mode at all confin-
ing pressures up to the maximum of 2010 MPa. Evidence in-
cludes a nearly linear increase of stress with strain up to fail-
ure, the audible release of strain energy upon failure, and the
observation of one plane, or occasionally multiple fracture
planes, with abundant slickensides.
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3. Asperities and Stress Drop

The extreme strengths discussed above are only observed
for the smallest events. As illustrated in Figure 2a, Nadeau
and Johnson [1998] found that the stress drop decreases as the
inverse one-fourth power of the moment

Ao = M,~V4 ©

The displacement (Figure 2b) was found to be a weaker func-
tion of moment increasing with moment as

d =< M00.17 (10)

Using the basic definition of moment (1), equations (9) and
(10) can be combined to give the decrease in stress drop with
increasing slip area as

A o< A0 (1n

These results appear to conflict with the common observa-
tion that for larger earthquakes Ag is a constant independent of
moment or area. They also do not appear to be consistent with
studies of seismic radiation from small earthquakes which find
that stress drop tends to decrease with decreasing moment for
very small events: exactly the opposite trend to that in (9)
[Abercrombie, 1995; Marone et al., 1995; Mayeda and Walter,
1996; Hardebeck and Hauk son, 1997]. However, a decrease
in stress drop with increas  1g moment is the expected result
for a fractal distribution ¢ asperities such as that observed by
Dieterich and Kilgore ~ .996] in laboratory frictional sliding
experiments. In suck: a fractal geometry, the density of asperi-
ties decreases with increasing slip area. This model is also
supported by high-resolution spatial imaging of seismic slip
during large earthquakes (cited above) which find a heteroge-
neous slip distribution in which isolated small areas have
large slip vectors and hence stress drops which are signifi-
cantly larger than the average value for the event. We show in
the next section 3.1 that a fractal distribution of asperities
having mass dimension D= 1.0 leads directly to the variation
of stress drop with area found by Nadeau and Johnson [1998]
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Figure 4. Scaled stress drop as a function of depth. The stress drop is scaled for moment
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in (11). The observation of constant stress drop for larger
events is consistent with this fractal asperity model since the
number of asperities per unit area is constant for areas larger
than the upper fractal limit of the asperity distribution.

3.1. A Fractal Asperity Model

We now develop a fractal asperity model that yields the ob-
served relation between stress drop and slip area given by
(11). To begin the discussion, assume that the fault plane is
populated with a distribution of unit asperities all having the
same area A, and strength ©,. For the smallest events, Nadeau
and Johnson [1998] find stress drops Ac,=2000 Mpa, which
we have shown is roughly consistent with the lattice shear
strength of an asperity that has no unhealed flaws. This im-
plies that the stress drop is total (i.e., Ac,=0,) for these small-
est events, otherwise o, would have to be larger than the in-
trinsic shear strength. We further assume that larger events in-
volve the cooperative slip (possibly involving mutual trig-
gering) of more than one unit asperity on some slipping patch
of the fault. This further assumes that areas between asperities
are either free to slip during an event because they bear no load
or that they have already slipped in creep before the event. It
is thus possible for slip on the asperities to produce a stress
increase (negative stress drop) in these areas.

If a patch of fault having area A is being prevented from
slipping by N unit asperities, each of which is at or just below
its failure stress o, then the apparent failure stress o; of the

patch is
A
O'f = GON(TO) = GvoNA

where we have defined N, as N/A, the number of unit asperities
per unit of slipping area on the fault plane. If N, is a constant
independent of A, then all patches will fail at the same stress.
If the stress drop is total for all events (Ac=0,), then all events
will have the same stress drop, as observed for larger events
but contrary to Nadeau and Johnson's [1998] observations for
small events. However, N, need not be constant and the stress
drop need not be total.

For the following analysis, we assume that the stress drop
is proportional to the failure stress on a patch and also to the
displacement.

(12)

Aaecaf(zid;] =A0'0A0NA[%) (13)

where d, is the displacement associated with the stress drop
Ac, when a single unit asperity fails in isolation. In general,
d>d, when A>A,, more than one asperity fails, and any given
unit asperity may fail more than once.

Nadeau and Johnson [1998] found d~M,”"" which, using
the basic definition of moment in (1) can be written

doec A% (14)
Note that (11) and (14) satisfy the relation Ac~dA™® as they

must. If (13) is to be consistent with (11), we also require
N,~A"°’ or, equivalently,

N o A0 (15)

The two dimensional Cantor dust in Figure 5 satisfies (15). We
chose this discrete hierarchical fractal because it has a “clus-
ters of clusters of clusters” structure which, we will show be-
low, also characterizes the spatial structure of the seismicity at
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Figure 5. Two dimension Cantor dust having fractal dimen-
sion D=log10/log10=1.0. (a) The generator on a 10x10 grid
and (b) the second-order figure on a 100x100 grid are shown.

Parkfield. The generator of this dust is shown in Figure 5a and
two iterations of the generator are shown in Figure 5b. Since
each increase in scale by a factor of 10 increases the number of
asperities by a factor 10, the fractal dimension is
D=log10/10g10=1.0 [see Schroeder, 1991, chap.8]. It is more
obvious that this dust has D=1 if the ten black squares in the
generator are placed on the diagonal of the 10x10 matrix. It-
eration of this generator produces a diagonal line at all higher
orders. In fact, any generator which contains m elements on an
mxm grid will have D=1 and satisfy (15). Larger grids simply
produce tighter hierarchical clusters of the type in Figure 5 and
thus have a larger lacunarity [see, e.g., Turcotte, 1997,
chap.6).

The black squares in Figure 5 are taken to represent the as-
perities and are assumed to have unit area (A,;=1). The white ar-
eas are assumed to support no stress, either because they sim-
ply do not bear any shear load or because they creep on a
timescale short in comparison to that associated with loading.
In either case, stress is thereby concentrated at the asperities.
If a small event ruptures one of the small (order 1) clusters of
10 asperities, then A=100. If a larger event ruptures one of the
next larger (order 2) clusters of 100 asperities the correspond-
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ing slipped area is 10,000. In general, for an nth order cluster,
N=10" and A=10"" and we have N=A"’ as required by (15). In
general, the power of A depends on the fractal dimension D of
the distribution of asperities as

N o AP2 (16)
In order to get a transition to uniform stress drop for larger
events, we need only require that there is an upper limit to the
fractal structure above which N4 is constant. We can also ask
how many orders of the fractal hierarchy in Figure 5 are re-
quired for the asperities to cover less than 1% of the fault sur-
face as observed by Nadeau and Johnson [1998]. Since the
asperities have unit area, we have

%ﬂv/, =(0.1" <.01 an

A
which has the solution n>2.

3.2. The Spatial Structure of Parkfield
Seismicity

Is there any evidence that a fractal distribution of asperities
having a geometry similar to Figure 5 exists on the San An-
dreas Fault plane in the areas investigated by Nadeau and
Johnson [1998]? According to the model presented above, all
earthquakes should nucleate at an asperity. Even though all but
the smallest events involve slip on more than one asperity,
the hypocenters should correspond to the point of origin of

Kilometers NE
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the slip and should therefore yield a map of the unit asperities
that can be analyzed for fractal structure. '

Figure 6 is a hypocenter map of 1386 events on the San An-
deras Fault recorded by the Parkfield array between 1987 and
1992. Even without numerical analysis, a hierarchical cluster-
ing pattern is evident in this data. One way to quantitatively
characterize such clustering is the pair correlation function de-
fined as [Schroeder, 1991, chap.10]

(18)

where N(s<r) is the number of point pairs whose Euclidean
separation distance s is less than r and N, is the total number
of points. The correlation dimension is then defined as
D, = lim 2220
r—0 logr

19)

In order to see how hierarchical clustering is revealed by the
correlation function, we first apply it to the two-dimensional
Cantor dust in Figure 5. For this analysis, the dust has been
extended to order 3 (10 clusters each containing 10 subclusters
each of which contains 10 asperities, all on a 1000x1000
grid). Figure 7a shows the density function n(s)/N’ for this
structure. The logarithm of the cumulative distribution C(r) de-
fined in (18) is plotted as a function of the logarithm of s in
Figure 7b, where the slope can be seen to be D, = 1.0 as ex-
pected and the “log-periodic fluctuations correspond to the
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Figure 6. Hypocenter map of 1386 events on the Parkfield segment of the San Andreas Fault in central Cali-
fornia recorded between 1987 and 1992. (a) across fault and (b) along-fault projections are shown. The square
solid black symbol shows the location of the 1966 M6 mainshock. (c) magnified area of the light grey box in
Figure 6b. (d) magnified area of the light grey box in Figure 6c. Note the hierarchical structure of clusters

within clusters.
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Figure 7. The pair correlation function for the Cantor dust shown in Figure 5 which has been extended to
three orders on a 1000x1000 grid. (a) The density function of pair distances and (b) the cumulative distribution
for which the log correlation function C(r) has been plotted as a function of logr is shown. The slope yields
the correlation dimension D2=1.0 . The log-periodic fluctuations yield the discrete rescale factor of 10.

three broad peaks in Figure 7a which reflect the discrete rescal-
ing factor of 10 which characterizes this dust.

We now turn to the Parkfield seismicity data, which R.M.
Nadeau and W. Foxall (manuscript in preparation, 1999) have
put in a form that can be compared with the Cantor dust analy-
sis. The procedure they used is briefly described here. All 1386
hypocenters were not located with the same accuracy. A subset
of 101 events were located relative to one another such that
their relative positions within clusters are accurate to about
15-10 m and their relative positions among clusters and non-
clustered events are of the order of $20-40 m. The other events
were located less precisely (+£150-200 m) (see Nadeau and
McEvilly [1997] for an analysis of the location accuracy of
these data). In order that the clustering at short distances is not
obscured by location error, the pair correlation function was
- only evaluated for each of the 101 well-located events. That is,
for each of the 101 well-located events, the distance to all
1385 other events in the data set was found thus yielding
101x1385 pair distances. In a clustered hierarchy such as the
Cantor dust in Figure 4, each point occupies a statistically
equivalent point in the sense that C(r) calculated for any given

point will be essentially the same. For such a structure, the
evaluation of C(r) for a subset of points does not introduce a
bias.

Figure 8a shows the density function n(s)/N* for the
101x1385 hypocenters pairs. Note that there are three maxima
approximately equally spaced in log(s) corresponding to a
rescaling factor near 20. Figure 8b shows the logarithm of the
cumulative distribution C(r) as a function of the logarithm of
r. The corresponding correlation dimension is D, = 0.96, and
the log-periodic fluctuations correspond to the maxima in Fig-
ure 8a. For comparison, a Cantor dust having fractal dimen-
sion D=1 and a rescale factor of 20 is shown in Figure 9. Com-
parison with Figure 5 shows that the larger rescale factor cor-
responds to tighter clustering and a larger lacunarity.

4. Discussion

We have found a discrete hierarchical fractal distribution of
unit asperities which yields the observed dependence of stress
drop on area and is consistent with the spatial distribution of
hypocenters observed on the San Andreas Fault near Parkfield
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Figure 8. The pair correlation function for the Parkfield seismicity shown in Figure 6. (a) The density func-
tion of the pair distances and (b) the cumulative distribution logC(r) versus log(r) is shown. The slope yields a
correlation dimension of D2=0.96. The log-periodic fluctuations correspond to the major peaks in Figure 8a

and imply a discrete rescale factor of about 20.

California. For this model to explain the recent large stress
drops inferred by Nadeau and Johnson [1998] for small
events, the unit asperities must be extremely strong, having
strengths 10 times those measured in the laboratory. Although
we have shown that such strong asperities cannot be ruled out
on physical grounds, it is not obvious that asperities can
reach these strengths in the field. To do so, virtually all the
microcracks would have to heal on a time short in comparison
to the interseismic interval. Studies of fault zone healing in
the field [Massonnet et al., 1996; Li et al, 1998] and in the
laboratory [Karner et al., 1997] show that significant healing
occurs under crustal conditions on the timescale of years. Mi-
crocracks in quartz heal on a timescale of a few hours at 600 °C
and 200 MPa in the presence of water [Brantley et al., 1990].
Fundamental questions also remain as to the origin of the
hierarchical fractal structure. Dieterich and Kilgore [1996]
found that contact between two rough random surfaces pro-
duced a fractal distribution of asperity contacts similar to the

one proposed in section 3.1. The fractal dimensions of the
contact distributions in their study range from near 1 to 2.7-
The observed fractal dimension tended to decrease with in-
creased contact area at higher normal stress. Although these
laboratory studies offer an explanation of the fractal geome-
try, the physical significance of the fractal dimension D=1 or
of the discrete rescaling factor of about 20 remains a mystery.
One possible source of discrete rescaling is the hierarchical
nested shear band structures observed in the laboratory by
Logan et al. [1992] and in the field by Arboleya and Engelder
[1995]. The concentration of shear into a narrow band reduces
the scale of the process by a discrete factor in the range 10-
100. Repeated localization within localization produces the
required discrete hierarchy. How such a structure would behave
mechanically is another mystery.

It is interesting that (13) alone implies a fractal dimension
D=1 regardless of dependence of d and Ac on area. Since Ac
must vary as d/A' dimensionally, (13) yields directly N,~A®"
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Figure 9. A Cantor dust having fractal dimension D=1 and a rescale factor of 20 comparable to the pattern of
repeating earthquake hypocenters observed at Parkfield. (a) the generator is shown. (b) Three generations of
the fractal on an 8000x8000 grid are also shown, although only the largest two generations can be resolved in
Figure 9. Each of the smallest spots consists of the generator pattern on a 20x20 subgrid.

or, equivalently, N~A®® which, in turn, means D=1. Hence the
observation that D=1 for the Parkfield events directly supports
the hierarchical clustering of unit asperities and is independent
of the details of the fall off of the stress drop with increasing
moment.

We also explored the possibility that the required decrease
in asperity density with increasing slip area is due to cluster-
ing in a random distribution. This model also has the desired
characteristic of asymptotically approaching a uniform asper-
ity density (and hence constant stress drop) over large areas.
However, the asperity density at the percolation threshold was
too high to explain the decrease in stress drop with area ob-
served by Nadeau and Johnson [1998].

Finally, we note that although the hierarchical geometry of
asperities proposed in this paper was derived from the small
repeating earthquakes studied by Nadeau and Johnson [1998],
it is also quantitatively consistent with recent patterns of het-
erogeneous slip observed for larger earthquakes. Compare, for
example, the stress concentrations found by Bouchon [1997]
for the Morgan Hill earthquake in Figure 1 with the cluster pat-

tern of small events at Parkfield in Figure 6. It is evident that
the slip inversions are only resolving the first level of the hi-
erarchy, and the stress concentrations of between 10 and 100
MPa are appropriate for this resolution based on the scaling
given by (11). The implication is that improved resolution of
slip will yield even higher stress drop concentrations' that ap-
proach the 2000 MPa yield limit.
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